The equation ${\sin ^2}\theta = \frac{{{x^2} + {y^2}}}{{2xy}},x,y, \ne 0$ is possible if
$x = y$
$x = \, -y$
$2x = y$
none of these
Prove that:
$ 2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0$
If $\tan x=\frac{3}{4}, \pi < x < \frac{3 \pi}{2},$ find the value of $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$
The circular wire of diameter $10\,cm$ is cut and placed along the circumference of a circle of diameter $1\, metre.$ The angle subtended by the wire at the centre of the circle is equal to
The equation ${\sec ^2}\theta = \frac{{4xy}}{{{{(x + y)}^2}}}$ is only possible when
If $\sin (\alpha - \beta ) = \frac{1}{2}$ and $\cos (\alpha + \beta ) = \frac{1}{2},$ where $\alpha $ and $\beta $ are positive acute angles, then